Detecting Copy Number Variations from Next-Generation Sequencing Data via (2) a Bayesian Procedure

Yu-Chung Wei and Guan-Hua Huang

National Chiao Tung University

Detecting Copy Number Variations from Next－Generation Sequencing Data via a Bayesian Procedure

Yu－Chung Wei and Guan－Hua Huang
国立交通大業
National Chiao Tung University

- Copy Number

 Variations- Sequencing Read Depths
- Bayesian

Procedure

- Model
-RJMCMC
- NTUH data

- NTUH data

- Copy Number

 Variations- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

T	T	C	G	A	A	\ldots	C	G	T	A	A	T	C	G	T	A	A	T
A	A	G	C	T	T	\ldots	C	G	C	A	T	T	A	G	C	A	T	T

$\mathrm{CN}=2$

$\mathrm{CN}=4$

- Copy Number Variations
- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

Copy number variations (CNVs) and human genetic diseases

- CNVs account for roughly 12% of the human genome
- Down syndrome: a genetic disorder caused by the presence of a third copy of chromosome 21
- Mental disorders, including autism, schizophrenia: about 1% with rare DNA deletions in chromosome 15q13.3, 16p11.2, or 1q21.1
Breast cancer: 20-30\% with HER-2 gene amplification and over-expression
- Copy Number Variations

Detecting CNVs

- Sequencing Read Depths Array-based comparative genome hybridization (array-CGH)
- Bayesian Procedure -Model -RJMCMC
- NTUH data
a Reference DNA

Test DNA
Hybridize to arrays

Block repeats with COT-1 DNA

Detect and quantify signals (Cy3:Cy5)

Spurious signal

- Copy Number Variations

Detecting CNVs

Spotted oligonucleotides on Affymetrix SNP

 arrays- Bayesian Procedure -Model -RJMCMC
- NTUH data

- Copy Number Variations

Limitations of hybridizationbased microarray approaches

- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data
- Hybridization-based microarray approaches: array-CGH and SNP arrays
- Microarrays are limited to
- detecting copy-number differences of sequences present in the reference assembly used to design the probes,
- provide no information on the location of duplicated copies,
- are generally unable to resolve breakpoints at the single-base-pair level
- Copy Number Variations
- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

Sequencing-based computational approaches

- The advent of next-generation sequencing (NGS) technologies promises to revolutionize copy number variation (CNV).
- NGS approaches can map CNVs with much greater accuracy than hybridization-based microarray approaches.
However, NGS approaches present substantial computational and bioinformatics challenges.
- Copy Number Variations
- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

Sequencing-based computational approaches

- There are four general types of NGS strategy, all of which focus on mapping sequence reads to the reference genome and subsequently identifying CNVs:
- read-pair (paired-end reads),
- read-depth,
- split-read,
- sequence assembly.
- Copy Number Variations

A A C T T $\cdots \cdots$ G C A T A G C A T T A

O Sequencing Read Depths

- Bayesian

Procedure
-Model
-RJMCMC

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{T} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{~A} & \mathrm{~A} & \ldots . . & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} \\
\hline \mathrm{~A} & \mathrm{~A} & \mathrm{G} & \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \ldots . . & \mathrm{G} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{G} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|cc|c|c|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{T} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{~A} & \mathrm{~A} & \ldots . . & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} \\
\hline \mathrm{~A} & \mathrm{~A} & \mathrm{G} & \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \ldots . . & \mathrm{G} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{G} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} \\
\hline
\end{array}
$$

- NTUH data
- Copy Number Variations

O Sequencing Read Depths

- Bayesian Procedure -Model -RJMCMC
- NTUH data

Aanamm … actamatacanmal

- Copy Number Variations
- Sequencing Read Depths
- Bayesian Procedure -Model \bullet •RJMCMC
- NTUH data

- Copy Number Variations

$$
A, G, C, T, C, A, T, A, G, A
$$

O Sequencing Read Depths

- Bayesian Procedure

$$
A, A, C, T, \quad G, A T, A, C, T, T
$$ -Model -RJMCMC

$$
A, A, C T, T, G, T, A, C, T, A
$$

A, A, C, T, T
G, C, T, T, G, C, T, A

- NTUH data

$$
A, A_{1} G_{T} T, \quad G, A, T, A, C, A
$$

$$
A, A, C T T, G, A T T A G C A T T A
$$

- Copy Number Variations

O Sequencing Read Depths

- Bayesian Procedure -Model \bullet •RJMCMC
- NTUH data

 $\begin{array}{lll}0.0 & 0.2 & 0.4\end{array}$ density
- Copy Number log RD /window:
- Sequencing

- Bayesian Procedure - Model \bullet •RJMCMC
- NTUH data

$$
\begin{aligned}
& P(\mathbf{C}, \underline{\mathbf{B}} \mathbf{D}) \\
\propto & \left.P(\underset{\sim}{\mathbf{D}} \mid \mathbf{C}, \underline{\mathbf{B}}) \times P\left(\underset{\sim}{\mathbf{C}}, \mid \mathbf{P}_{\underline{\mathbf{B}}}\right)\right) \times P(\underset{\sim}{\mathbf{B}})
\end{aligned}
$$

- Copy Number \log RD $\begin{array}{llllllllll}D_{1} & D_{3} & D_{5} & D_{7} & D_{9} & D_{11} & D_{13} & D_{15} & D_{17} & D_{19} \\ D_{21} & D_{23} & D_{25}\end{array}$ Variations /window: $\begin{array}{llllll}D_{2} & D_{4} & D_{6} & D_{8} & D_{10} & D_{12} \\ D_{14} & D_{16} & D_{18} & D_{20} & D_{22} & D_{24}\end{array}$

- Sequencing Read Depths
- Bayesian Procedure - Model -RJMCMC

Breakpoint			¢-18	
			
CN state:	$\mathrm{C}_{1}{ }^{*}=2$	$C_{2}{ }^{*}=1$	$\mathrm{C}_{3}{ }^{*}=2$	$\mathrm{C}_{4}{ }^{*}=3$

$w_{01}, w_{02}, \ldots, w_{0 k}$

$$
\frac{W_{01}}{1-W_{02}}, \frac{W_{03}}{1-W_{02}}, \frac{W_{0 K}}{1-W_{02}}
$$

- NTUH data

$$
\begin{aligned}
& P(\mathbf{C}, \underline{\mathbf{B}} \mathbf{D}) \\
\propto & P(\underset{\sim}{\mathbf{D}} \mid \underset{C}{\mathbf{C}}, \underset{\sim}{\mathbf{B}}) \times P(\underset{\sim}{\mathbf{C}} \mid \underset{\sim}{\mathbf{B}}) \times P(\underset{\sim}{\mathbf{B}})
\end{aligned}
$$

- Copy Number \log RD $\begin{array}{llllllllllll}D_{1} & D_{3} & D_{5} & D_{7} & D_{9} & D_{11} & D_{13} & D_{15} & D_{17} & D_{19} & D_{21} & D_{23} \\ D_{25}\end{array}$ /window: $\begin{array}{lllllll}D_{2} & D_{4} & D_{6} & D_{8} & D_{10} & D_{12} & D_{14} \\ D_{16} & D_{18} & D_{20} & D_{22} & D_{24}\end{array}$ Variations
- Sequencing Read Depths $\begin{array}{rllll}\mathbf{B}_{0} \mathbf{B}_{1} & & \mathbf{B}_{8} \mathbf{B}_{9} & \mathbf{B}_{13} & \mathbf{B}_{20} \\ \text { Breakpoint: }\|\| & \cdots \cdots & \|\|\| & \| & \| \\ \mathbf{1} 0 & & \mathbf{0} \mathbf{1} & \mathbf{1} & \mathbf{1}\end{array}$ CN state:

$$
\mathrm{C}_{1}{ }^{*}=2
$$

$$
C_{2}^{*}=1
$$

$$
C_{3}^{*}=2
$$

$$
\mathrm{C}_{4}{ }^{*}=3
$$

- Bayesian Procedure - Model -RJMCMC

$B_{i} \sim \operatorname{Binomial}(\boldsymbol{\lambda})$

- NTUH data

$$
\begin{aligned}
& \quad P(\underset{\sim}{\mathbf{C}}, \underset{\mathbf{B}}{\mathbf{D}}) \\
& \propto P(\underset{\sim}{\mathbf{D}} \mid \underset{\mathbf{C}}{\mathbf{B}}, \underset{\sim}{\mathbf{B}}) \times P(\underset{\sim}{\mathbf{C} \mid \underset{\sim}{\mathbf{B}}) \times P(\underset{\sim}{\mathbf{B}})}
\end{aligned}
$$

- Copy Number \log RD /window:

$$
\begin{array}{lllllllllll}
D_{1} & D_{3} & D_{5} & D_{7} & D_{9} & D_{11} & D_{13} & D_{15} & D_{17} & D_{19} & D_{21}
\end{array} D_{23} D_{25}
$$ Variations

- Sequencing Read Depths $\begin{array}{ccccc}\mathbf{B}_{0} \mathbf{B}_{1} & & \mathbf{B}_{8} \mathbf{B}_{9} & \mathbf{B}_{13} & \mathbf{B}_{20} \\ \text { Breakpoint: }\|\| & \cdots \cdots & \left\|\|_{1}\right. & \| & \| \\ \mathbf{1} 0 & & \mathbf{0} \mathbf{1} & \mathbf{1} & \mathbf{1}\end{array}$ CN state:
$\mathrm{C}_{1}{ }^{*}=2$
$C_{2}^{*}=1$
$C_{3}^{*}=2$
$C_{4}^{*}=3$
- Bayesian Procedure - Model -RJMCMC
- NTUH data
- Copy Number Variations

1. Merge

- Sequencing Read Depths

CN state: \square

- Bayesian

Procedure -Model -RJMCMC

- NTUH data

$$
\mathrm{C}_{1}^{*}=2
$$

$$
C_{2}^{*}=3
$$

- Copy Number Variations
- Sequencing Read Depths
- Bayesian

Procedure -Model -RJMCMC

- NTUH data

2. Split

- Copy Number Variations

3. Trifid

- Bayesian Procedure -Model -RJMCMC
- NTUH data

CN state:

$\mathrm{C}_{1}^{*}=2$	$\mathrm{C}_{2}^{*}=1$	$\mathrm{C}_{3}^{*}=2$	$\mathrm{C}_{4}^{*}=3$

- Copy Number Variations

4. Boundary Change

- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

CN state:

- Copy Number Variations
- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

NTUH Department of OB/GYN

- Silver-Russell syndrome: a growth disorder, have a small, triangular face with distinctive facial features
- Illumina/Solexa (NGS technology)
- Targeted exon region (protein coding regions)
- Chromosome 7
- 32387 windows
- Copy Number Variations

Sample 1:

- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

$\bullet: C N 1 \quad$:CN2 •:CN3 •:CN4 •:CN5

- Copy Number

 Variations
Sample 2:

- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

$\bullet: C N 1$ •:CN2 •:CN3 •:CN4 •:CN5

- Copy Number

 Variations
Sample 1 vs. 2:

- Sequencing Read Depths
- Bayesian Procedure -Model -RJMCMC
- NTUH data

- :Deletion
- :Normal
- :Duplication

